Quantitative and Qualitative Approaches to Neutron Imaging

Jens Gregor

Electrical Engineering and Computer Science
University of Tennessee, Knoxville, TN
jgregor@eecs.utk.edu
Summary and Conclusions

• Neutron imaging and X-ray CT similar/complementary

• Presence of fissile material can be quantified using non-traditional / low resolution imaging geometry

• Standard tomographic techniques allow quantitative high-resolution imaging of hydrogenous material

• Coded source based data acquisition facilitates higher resolution imaging without loss of much needed flux

• Can be combined with X-ray CT, SPECT (not shown)
Neutron vs X-ray Imaging

Macroscopic cross-section, Beer’s Law:

\[\Sigma = N \frac{N_A}{M} \rho \text{ [cm}^{-1}] \]

\[I_1 = I_0 \exp(-\int L \, dl \, \Sigma) \]

N: atomic number, \(N_A \): Avagadro’s number
M: molar mass, \(\rho \): material density

http://www.psi.ch/niag/what-is-neutron-imaging
D.C. Hensley, ORNL/NorthWest Nuclear LLC

- Non-destructive assay, examination of waste drums
- Passive: single (α,n) reactions, correlated events
- Active: pulsed thermal neutrons, differential dieaway

- Imaging equations: \(y = E \cdot m \)

 Single: \(y_{d\theta} = \sum_v e_{d\theta v} \cdot m_v \)

 Corr.: \(y_{d\theta} = \sum_v e_{\theta v} \cdot e_{d\theta v} \cdot m_v \)

 Active: \(y_{d\theta} = \sum_v e_{d\theta v} \cdot f_{\theta vt} \cdot m_v + h_{dt} \)

\(y = \text{yield}, e = \text{detector efficiency}, m = \text{mass}, f = \text{flux} \)
\(d = \text{detector pack}, v = \text{voxel}, \theta = \text{rotation angle}, t = \text{time} \)
APNEA 2: Least Squares Formulation

- LSQR used to solve penalized least squares problem
 \[m = \arg \min_\mathbf{m} \| \mathbf{E} \mathbf{m} - \mathbf{y} \|^2 + \sum \beta_i \| \mathbf{H}_i \mathbf{m} - \mathbf{z}_i \|^2 \]
- Concentrated vs uniformly distributed source material
- Drum model (image)
• 252Cf point source embedded in soil: true rate 9,555 n/s

Location: $r=0''$ (core)

Total activity = 9478.1
Min, max levels = 0.0 9345.0

<table>
<thead>
<tr>
<th>HEIGHT</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
<th>30</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>986*</td>
<td>0</td>
<td>0</td>
<td>986</td>
</tr>
<tr>
<td>AZ 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AZ 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AZ 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AZ 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AZ 5</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>AZ 6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AZ 7</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>AZ 8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AZ SUM</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0</td>
<td>0</td>
<td>998</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Location: $r=6''$ vs 0,8'' for model

Total activity = 8210.0
Min, max levels = 0.0 5962.4

<table>
<thead>
<tr>
<th>HEIGHT</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
<th>30</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AZ 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AZ 2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>AZ 3</td>
<td>0</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>AZ 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>4</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>AZ 5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AZ 6</td>
<td>0</td>
<td>0</td>
<td>41</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td>AZ 7</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>726*</td>
<td>57</td>
<td>0</td>
<td>815</td>
</tr>
<tr>
<td>AZ 8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>16</td>
<td>41</td>
</tr>
<tr>
<td>AZ SUM</td>
<td>1</td>
<td>0</td>
<td>86</td>
<td>811</td>
<td>86</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1</td>
<td>0</td>
<td>86</td>
<td>811</td>
<td>86</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
APNEA 4: Example Results

- D&D waste from Nuclear Fuel Services (Erwin, TN)
- 240Pu embedded in soil – sample size of 528 drums
HFIR 1: Tomographic Imaging

T. Toops and C. Finney, ORNL / NTRC

- CG-1D beamline at High-Flux Isotope Reactor (HFIR)
- High-resolution cone beam tomography (proj. based)
- SIRT used to solve weighted least squares problem
 \[x = \arg\min \| A x - b \|_w^2 + \beta \| x \|_2^2 \]

CCD array: 2048 x 2048
Angular incr.: < 1°
Exposure time: 30-240s
Angular range: 180° + fan
Image resolution: 40 um
• Diesel particulate filter (DPF) traps soot, particulate matter
• Quantify deposit / regeneration

Cross-sectional image

• Differences in inlet and outlet channel open areas correlate with average deposit build-up

May 7, 2014
Jens Gregor, University of Tennessee
P. Bingham and H. Santos-Villalobos, ORNL

- HFIR guide set-up leads to near-parallel neutron beam
- System design trade-off: flux αD, resolution $\alpha L/D$, $1/d$
Coded Source 2: Mask Aperture

- Detector resolution limit overcome thru magnification
- Small pinhole = resolution, many pinholes = more flux
- Overlapped projections → radiographic reconstruction

Beam Mask Object Scintillator

≈ 0.0 m L=1.0m D=5.0m
Coded Source 3: Example Results

Mask

Projection

SIRT N=1000

CGSIRT N=4

200um / 1.3K

50um / 24.6K
Code Source 4: Example Results

- Convolution reconstruction of metal screw: HFIR data

Direct imaging at top. Coded source at bottom.

- Iterative reconstruction of wedge: simulated

100um 50um 20um 10um

SIRT N=100 CGSIRT N=4
Related Imaging Research Examples

Medical, preclinical imaging
PET, uSPECT, uCT, MRI, Monte Carlo

Industrial, security imaging
Neutron and x-ray CT

- Statistical, algebraic reconstruction algorithms and Feldkamp
- Academic proof-of-principle and commercial/production code
- Participant: ALERT T03 Iterative Recon, T04 ATR Development