Automatic Prohibited and Illicit Item Detection in X-ray and Computed Tomography Security Screening – a research snapshot

Toby P. Breckon
PhD CEng CSci FBCS FRPS FIET ASIS
Professor – Computer Vision and Image Processing
Engineering & Computer Science
Durham University, Durham, UK

toby.breckon@durham.ac.uk / +44 191 334 2396

July 2019 – CBP-ADEPT-02 (rev. 02)
So What? / Who Cares?

- **Space:** Baggage & Parcel Inspection
 (carry on and hold, extensible to freight)

- **Problem:**
 - **Prohibited Item Detection** (by shape/material ... guns / knives / other - ?)
 - **Anomalous Item Detection** (by knowing what is abnormal - ?)

- **Solution:**
 - 3rd party, world-leading automatic object detection & classification algorithms
 - using 2nd / 3rd generation deep learning techniques

- **Results:** ~98%, < 1 sec., FP <1%, invariant (on firearms detection, > 95% for other)
- **TRL:** 6

- **Contact me:** toby.breckon@durham.ac.uk
Concept of Operation

Deep Learning
Convolutional Neural Networks

- Complex / Cluttered?
- Prohibited items?
- Illicit items?

Operative Review

Durham

- 3rd oldest university in England (1832)
- World leading university (top 100)
- UK ranking: top 5 Engineering & Computer Science
- Engineering & Computer Science
 - Nvidia Research Centre
 - Intel Parallel Computing Centre
- Within X-ray Security:
 - 12 years experience
 - threat detection, threat image projection, anomaly detection
Deep Learning for Object Detection in 2D X-ray

- **1st generation** deep net approaches
 - 95% (True+) over 6 object categories
 - established X-ray training via transfer learning (which everyone uses now) [Akcay et al. 2016]

<table>
<thead>
<tr>
<th>Method</th>
<th>Class</th>
<th>True +</th>
<th>False +</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Akcay et al. 2016]</td>
<td>Firearm</td>
<td>98.62</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Images – [Akcay, Breckon et al. 2016 – Durham University]
Deep Learning for Object Detection in 2D X-ray

- **2nd generation** deep net approaches
 - high PD (true+), low PFA (false+) [Akcay et al. 2017]
 - leading global results; UK government test dataset [Akcay et al. 2018]

<table>
<thead>
<tr>
<th>Method</th>
<th>Class</th>
<th>True +</th>
<th>False +</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Akcay et al. 2017 / 2018]</td>
<td>Firearm</td>
<td>99.5+</td>
<td>< 0.5</td>
</tr>
</tbody>
</table>

Images – [Akcay, Breckon et al. 2018 – Durham University]
Deep Learning for Anomaly Detection in 2D X-ray

- **3rd generation** deep net approaches
 - need normal-only training data - **GANomaly** [Akcay et al. 2018]
 - use of object-wise and component-wise anomalies [Gaus et al. 2019 + in press]
Also available in 3D CT ...

[prior work]

Single signature feature-point based detection: ~90% detection

“bag of visual words” generalized signature classification: ~98+% detection, low FP (<1%)
Experience in the Field ...

• **Training Data:**
 - CT: ~800-1,000+ bags
 - 2D X-ray: UK gov. + our own on-site X-ray scanner (~100,000+ images)

• **Funding:** 2007 → 2019+
 - Today: 10+ years, 10+ projects and 25+ publications later

• **Publications:** “never unreasonably withheld”
 - published in leading conference / journal venues
 - wider impact in generalized 3D object recognition + medical CT

• **Algorithm Deployment:** 3D TIP solution
Automatic Prohibited and Contraband Item Detection in X-ray and Computed Tomography Security Screening – a research snapshot

toby.breckon@durham.ac.uk / +44 191 334 2396

http://www.durham.ac.uk/toby.breckon

Images – [Akcay, Breckon et al. 2018 – Durham University]
X-ray Detection:

3D CT Detection & Segmentation:

All available open access - full listing including all other references.