Phys 5870: Modern Computational Methods in Solids

Adrian E. Feiguin

October 8, 2009

Solution to the one-dimensional Schrödinger Eq. using a Taylor expansion

We want to solve the $1-\mathrm{d}$ SE. Taking $\hbar^{2} / 2 m=1$:

$$
\begin{equation*}
\left[-\frac{d^{2}}{d x^{2}}+(V(x)-E)\right] \psi(x)=0 \tag{1}
\end{equation*}
$$

We are seeking a solution of the form

$$
\begin{equation*}
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \tag{2}
\end{equation*}
$$

Square well

Replacing (2) in (1), with $V(x)=-V_{0}$ for $|x|<x_{0}$, we obtain

$$
\begin{equation*}
-\sum_{n=0}^{\infty} a_{n+1} x^{n}(n+2)(n+1)-\left(E+V_{0}\right) \sum_{n=0}^{\infty} a^{n} x^{n}=0 \tag{3}
\end{equation*}
$$

Equalizing the terms with equal powers of x, we obtain the recursion relation:

$$
\begin{equation*}
a_{n+2}(n+2)(n+1)=-\left(E+V_{0}\right) a_{n} \tag{4}
\end{equation*}
$$

Clearly, we need to know a_{0} and a_{1}. For the even solutions we take $a_{0}=1$, $a_{1}=0$, and for the odd solutions, $a_{0}=0, a_{1}=1$.

Triangular well

Proceeding as before, with $V(x)=-V_{0}+\frac{V_{0}}{x_{0}}|x|$ for $|x|<x_{0}$, we obtain, for positive x

$$
\begin{equation*}
-\sum_{n=0}^{\infty} a_{n+1} x^{n}(n+2)(n+1)-\left(E+V_{0}\right) \sum_{n=0}^{\infty} a_{n} x^{n}+\frac{V_{0}}{x_{0}} \sum_{n=1}^{\infty} a_{n-1} x^{n}=0 \tag{5}
\end{equation*}
$$

For the zeroeth power we obtain

$$
\begin{equation*}
-2 a_{2}=\left(E+V_{0}\right) a_{0} \tag{6}
\end{equation*}
$$

For the higher order terms we get

$$
\begin{equation*}
-a_{n+1}(n+2)(n+1)=\left(E+V_{0}\right) a_{n}-\frac{V_{0}}{x_{0}} a_{n-1} \tag{7}
\end{equation*}
$$

Again, by setting the boundary conditions for even and odd solutions as before, we obtain the desired sequence.

Bound states

Bound states decay exponentially outside the well. More explicily:

$$
\begin{equation*}
y_{>}(x)=C \exp (-\kappa x) \tag{8}
\end{equation*}
$$

for $x>x_{0}$, where $\kappa=\sqrt{|E|}$, and C is some constant. In order to satisfy the matching conditions at $x=x_{0}$ we can renormalize this solutions by choosing a value of the constant C as

$$
\begin{equation*}
C=y_{<}\left(x_{0}\right) / \exp \left(-\kappa x_{0}\right) \tag{9}
\end{equation*}
$$

where $y_{<}$is the numerical solution inside the well.
We are seeking solutions that satisfy also that $y_{<}^{\prime}\left(x_{0}\right)=y_{>}^{\prime}\left(x_{0}\right)$, where

$$
\begin{align*}
& y_{<}^{\prime}(x)=\sum_{n=0}^{\infty} a_{n+1}(n+1) x^{n} \\
& y_{>}^{\prime}(x)=-C \kappa \exp (-\kappa x) . \tag{10}
\end{align*}
$$

The corresponding energy spectrum will be discrete. We obtain the bound states by using the bisection method.

