Phys 5870: Modern Computational Methods in Solids Homework 6

Adrian E. Feiguin

April 3, 2012

Exercise 1:

Consider a potential consisting of a 1D periodic triangular well. The depth of the potential is V_{0} and the width $r_{0}<a$, where a is the size of the unit cell. The explicit expression is given by:

$$
V(x)=\left\{\begin{array}{cc}
-V_{0}-\left(V_{0} / r_{0}\right) x & \text { if }-r_{0} \leq x<0 \tag{1}\\
-V_{0}+\left(V_{0} / r_{0}\right) x & \text { if } 0 \leq x<r_{0} \\
0 \text { otherwise } &
\end{array}\right.
$$

a) Approximate the potential using a Fourier series. For simplicity take $r_{0}=a / 2$. Plot the series for different numbers of terms kept, $2,4,8,12,24$, comparing to the exact potential.
b) Solve numerically the Schrödinger equation using plane waves. Plot the bands in the 1st Brillouin zone, and show the convergence with a number of terms kept in the series.

