Phys 5870: Modern Computational Methods in Solids
 Homework 4

Adrian E. Feiguin

Hartree-Fock solution of the $\mathbf{H e H}^{+}$molecule

We will use a basis of Hydrogen-like atomic wave-functions for each atom:

$$
\begin{aligned}
\phi_{1}(r) & =\sqrt{\frac{r^{3}}{\pi}} \exp \left(-\alpha_{1}\left(r-R_{1}\right)\right) \\
\phi_{2}(r) & =\sqrt{\frac{r^{3}}{\pi}} \exp \left(-\alpha_{2}\left(r-R_{2}\right)\right)
\end{aligned}
$$

where R_{1} and R_{2} are the positions of the two nuclei. We take the distance between them as $R=1.4632$ in atomic units, and we use the optimal values $\alpha_{1}=2.0925$ for He and $\alpha_{2}=1.24$ for H .

We propose a solution for the orbital part of the form

$$
\phi(r)=C_{1} \phi_{1}(r)+C_{2} \phi_{2}(r)
$$

where C_{1} and C_{2} are constants to be determined.
With these numbers we obtain the following overlap matrix

$$
S=\left(\begin{array}{cc}
1.0 & 0.4508 \tag{1}\\
0.4508 & 1.0
\end{array}\right)
$$

and kinetic energy

$$
T=\left(\begin{array}{cc}
2.1643 & 0.1670 \tag{2}\\
0.1670 & 0.76
\end{array}\right)
$$

The electrostatic interaction with nuclei 1 and 2 are given by:

$$
V_{1}=\left(\begin{array}{ll}
-4.1398 & -1.1029 \tag{3}\\
-1.1029 & -1.2652
\end{array}\right)
$$

and

$$
V_{2}=\left(\begin{array}{ll}
-0.6772 & -0.4313 \tag{4}\\
-0.4313 & -1.2266
\end{array}\right)
$$

The next step is to calculate the integrals

$$
\left\langle\phi_{p} \phi_{q}\right| \frac{1}{r_{12}}\left|\phi_{r} \phi_{s}\right\rangle
$$

with $p, q, r, s=1,2$. These give 16 possibilities. However, of these, there are only six unique integrals

$$
\begin{align*}
\left\langle\phi_{1} \phi_{1}\right| \frac{1}{r_{12}}\left|\phi_{1} \phi_{1}\right\rangle & =1.3072 \\
\left\langle\phi_{2} \phi_{1}\right| \frac{1}{r_{12}}\left|\phi_{1} \phi_{1}\right\rangle & =0.4373 \\
\left\langle\phi_{2} \phi_{1}\right| \frac{1}{r_{12}}\left|\phi_{2} \phi_{1}\right\rangle & =0.1773 \\
\left\langle\phi_{2} \phi_{2}\right| \frac{1}{r_{12}}\left|\phi_{1} \phi_{1}\right\rangle & =0.6057 \\
\left\langle\phi_{2} \phi_{2}\right| \frac{1}{r_{12}}\left|\phi_{2} \phi_{1}\right\rangle & =0.3118 \\
\left\langle\phi_{2} \phi_{2}\right| \frac{1}{r_{12}}\left|\phi_{2} \phi_{2}\right\rangle & =0.7746 \tag{5}
\end{align*}
$$

Using all this information calculate:
a) The Fock matrix " F " for this problem. To do this, pick as the initial condition $C_{1}=C_{2}=1 / \sqrt{2}$.
b) Solve "by hand" (it is a two by two determinant) the first iteration H-F/Roothaan equations

$$
F C=\epsilon S C
$$

and obtain the energies, and the ground-state.

