Phys 5870: Modern Computational Methods in Solids
 Homework 3

Adrian E. Feiguin

February 20, 2012

We have chosen a basis for solving the Helium atom as:

$$
\begin{array}{r}
\psi_{1}\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right)=\frac{1}{\sqrt{2}} 1 \mathrm{~s}\left(\mathbf{r}_{1}\right) 1 \mathrm{~s}\left(\mathbf{r}_{\mathbf{2}}\right)[|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle] \\
\psi_{2}\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right)=\frac{1}{\sqrt{2}}\left[1 \mathrm{~s}\left(\mathbf{r}_{1}\right) 2 \mathrm{~s}\left(\mathbf{r}_{2}\right)-1 \mathrm{~s}\left(\mathbf{r}_{\mathbf{2}}\right) 2 \mathrm{~s}\left(\mathbf{r}_{1}\right)\right]|\uparrow \uparrow\rangle \\
\psi_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}\right)=\frac{1}{2}\left[1 \mathrm{~s}\left(\mathbf{r}_{1}\right) 2 \mathrm{~s}\left(\mathbf{r}_{2}\right)-1 \mathrm{~s}\left(\mathbf{r}_{2}\right) 2 \mathrm{~s}\left(\mathbf{r}_{1}\right)\right][|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle] \\
\psi_{4}\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right)=\frac{1}{\sqrt{2}}\left[1 \mathrm{~s}\left(\mathbf{r}_{1}\right) 2 \mathrm{~s}\left(\mathbf{r}_{2}\right)-1 \mathrm{~s}\left(\mathbf{r}_{\mathbf{2}}\right) 2 \mathrm{~s}\left(\mathbf{r}_{1}\right)\right]|\downarrow \downarrow\rangle \\
\psi_{5}\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}\right)=\frac{1}{2}\left[1 \mathrm{~s}\left(\mathbf{r}_{1}\right) 2 \mathrm{~s}\left(\mathbf{r}_{\mathbf{2}}\right)+1 \mathrm{~s}\left(\mathbf{r}_{\mathbf{2}}\right) 2 \mathrm{~s}\left(\mathbf{r}_{1}\right)\right][|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle]
\end{array}
$$

Show that each of these states can be obtained as a Slater determinant, or a linear combination of two Slater determinants.

